[image: image6.png]< DIAGRAM

Center
A BENETECH GLOBAL LITERACY INITIATIVE

[image: image7.jpg]WG!H Carl and Ruth Shapiro Family

NCAM

National Center for Accessible Media

DIAGRAM Center Working Paper:

Resources for Providing Accessible Multimedia

April 2016
Table of Contents

1Resources for Providing Accessible Multimedia

Introduction
2
Background
2
Captions
2
Caption authoring
3
Caption formats
5
Caption delivery
6
Caption regulations
8
Audio descriptions
9
Description authoring
10
Description delivery
11
Description regulations
12
Canvas
12
Flash
14
Captions and audio descriptions in Flash
15
Flash interactives
16
Video and audio playback
16
HTML5 media elements
17
Browser-default media players; custom HTML media players
19
Video-hosting sites
19
Popcorn.js
21
Integrating multimedia into EPUB
22
Readium
22
iBooks
23
Case studies
25
PhET: Flash to HTML5
25
Wolfram CXX
28

Introduction
As accessibility solutions for still images and electronic books have become more common and more stable, accessibility solutions for multimedia and interactive resources continues to change. This paper catalogs the known stable solutions, explores the areas of rapid flux, and gives best practices that will remain useful even as technology changes.
Background
The term “multimedia” can be used to cover a wide range of non-text objects, such as images, video and audio clips, and interactive objects, all of which can be included in electronic materials of all types. Regardless of how multimedia is presented, though, it can always pose significant challenges to users who are deaf, hard-of-hearing, blind or visually impaired. Modern delivery formats, such as HTML and EPUB, now offer users with sensory disabilities much greater access to multimedia, incorporating not only captions and audio descriptions but also providing accessible mechanisms to control the media itself. Markup languages have improved greatly in recent years, giving authors and developers more options than ever before to provide accessible media, and user agents (Web browsers, e-book reading systems, etc.) are now beginning to widely support these new features. Authoring tools are also beginning to provide support for accessibility features, primarily captions and, to a lesser extent, audio descriptions.
While falling within the broad definition of multimedia, the topic of accessible interactive objects, such as scientific graphics or laboratory simulations, is not covered in this document. However, this topic has been thoroughly explored by Kyle Keane of Wolfram Research (2014) in Accessible Dynamic Scientific Graphics. This Web site includes a demonstration of how to make dynamic scientific images accessible to users who are blind or visually impaired, as well as "Interactive Scientific Graphics: Recommended Practices for Verbal Descriptions," a detailed report that describes the best practices for making interactive scientific graphics pedagogically and functionally equivalent for users who are blind.
This paper focuses primarily on the basic methods for creating accessible multimedia that can be deployed in a variety of ways. Some accessibility enhancements, such as captions and audio descriptions, have been available for a number of years and can be used with nearly any playback mechanism; others, such as the use of Popcorn.js, are relatively new and may have limited implementation, distribution or playback opportunities. While not intended to be a complete do-it-yourself guide, you will find more than enough information here to make informed decisions about accessibility options for your next multimedia project.

Captions

Captions were originally invented 45 years ago to help deaf and hard-of-hearing people understand television, but they are in fact useful to everyone. Captions are always written in the same language as the audio. They not only render dialog and narration conveyed in the main audio track (also known as program audio) as text on the screen, they also indicate important non-speech information such as sound effects, music and laughter. In some countries and some technology standards captions are called subtitles, which should not be confused with foreign-language subtitles, which translate the program audio into another language.
Captions can be either closed or open. Closed captions are transmitted as data along with the video but are not visible until the user elects to turn them on, usually by invoking an on-screen control (such as a button) or menu selection. Authors can style closed captions in a variety of ways, but users can override those styles using mechanisms provided by multimedia players. Open captions, on the other hand, are always visible; they have been merged with the video track and cannot be turned off or restyled in any way.

While Flash has been the video-delivery platform of choice for many years, video distributors are now moving toward delivery primarily in the MP4 format using HTML5 media elements. The techniques described in this section are appropriate for these and other non-Flash formats except where specified otherwise. While Flash is still a viable option for video delivery, the current trend indicates that it will eventually be supplanted by other formats. See the section on Flash for more information.
Captions can be provided for interactive media as well as for linear video; their delivery will need to be timed to match the audio track including any audio that is triggered by user interactions. See the section on media formats for information on providing captions for interactive materials.

Caption authoring
Providing synchronized captions is significantly different from merely providing a text transcript of the audio portion of a video. (However, a text transcript is always recommended in addition to captions. Transcripts provide an easy way to scan a video’s script or to search for particular terms.) Captions can be created using a number of different software applications, on both Mac and Windows operating systems. The list below shows three currently available applications.

· Movie Captioner
· CaptionMaker/MacCaption
· MAGpie
Online editors are also available:

· Amara
· YouTube (see the special note below)

It is out of the scope of this paper to fully describe the process of writing accurate, useful captions, but detailed style guidelines can be found in the DCMP Caption Key. The style rules described here apply to any number of any captioning situations, with special emphasis placed on readable presentation of text.
The general technical workflow for caption creation can be briefly summarized as follows.
Enter caption text into the editor

Caption text can be entered by transcribing directly into the caption editor or, in many cases, by importing an electronic script. The latter is generally more efficient than the former, but this may vary depending on the application.
Edit and break text into captions

Once text has been entered into the caption editor, it can be edited and corrected as necessary, and text can be divided or combined into blocks to create smaller or larger captions. Normally, each caption will contain one, two or three rows of text. After end punctuation (period, question mark, etc.), always begin a new caption.

Time the captions

Once the text has been edited and formatted, assign a timecode to each caption that indicates when it will appear or disappear from the screen. How this is done will depend on the captioning software, but it’s generally as simple as pressing a button on the keyboard or clicking one on-screen. In most cases one caption will follow another without pause, but authoring tools also give users the option to erase the caption display when there is a break in the narration or dialog.
Review the captions
Misspelled or poorly edited and timed captions will only make it harder for the viewer to keep up with what’s happening on-screen, so accuracy in captioning is paramount. In most caption-editing software authors will be able to make changes to both text and timing as the captions are being reviewed. If possible, someone who did not author the captions should also review the work.
Export a caption file

Once the review process is completed, all captioning software will export the captions in various formats. Which format to choose will be governed by the target player: not all players support the same caption formats so it may be necessary to export the captions in multiple formats. Caption formats are discussed in the following section.

Special note about YouTube captions

Most videos uploaded to YouTube are captioned by Google’s automatic-captioning process.
Automatic captioning (also known as auto-caption) uses sophisticated speech-to-text and timing technology to convert audio to text without human intervention. While auto-caption will put captions on the screen, the accuracy of these captions is frequently quite low and often results in poor-quality captions that provide very little useful or, in some cases, sensible information. While you cannot prevent YouTube from applying auto-captions to your videos, these captions should always be disabled once the video has been uploaded so that users cannot turn auto-captions on while the video is playing. Read the instructions for disabling automatic captions.
Rather than rely on auto-captions, a better practice would be to upload accurate captions to YouTube yourself. You can write the captions using a stand-alone editor and export the captions to a format supported by YouTube (note that YouTube supports WebVTT and TTML captions in addition to the formats listed in their documentation) before uploading. Alternatively, you can use YouTube’s online caption editor. In some cases it may be acceptable to use the auto-caption process only to create an initial transcript of the audio track. In this case, the recommended practice is to download the auto-generated caption file from the YouTube site, clean up the spelling, grammar and timing errors, and then upload the corrected caption file back to YouTube. When taking this approach, you must still remember to disable the automatic captions, however.
Caption formats

Most modern multimedia players provide support for closed captions, but not all support the same delivery formats. As a result, you may find that you need to create multiple captions formats in order to ensure that viewers will be able to see captions using any multimedia playback software. While this may mean additional work for caption authors, the good news is that there are a limited number of formats in use today. The four most common are listed below. All can be used when presenting video using HTML5’s video and audio media elements.

TTML

The Timed Text Markup Language (TTML; originally known as DFXP) was created by the timed-text working group at the W3C as a non-proprietary caption and subtitle display format. TTML supports a full range of presentation and timing options, is XML-based and is provided in more than one profile to accommodate the presentation of text as well as images. Currently, the only browsers that support TTML are Internet Explorer 10/11 and Edge. TTML is, however, the caption format used by a number of large streaming-media providers, and it is the basis for the SMPTE-TT caption format, Internet Media Subtitles and Captions 1.0, TTML Simple Delivery Profile for Closed Captions (US), as well as captions in the UltraViolet Common File Format (CFF). View a simple example of TTML captions playing in an embedded video.
WebVTT

The Web Video Text Tracks (WebVTT) format was originally created by the Web Hypertext Application Technology Working Group (WHATWG) but was eventually integrated into the timed-text working group’s charter. WebVTT is a non-XML format and provides a similar range of features as TTML, including support for right-to-left and top-to-bottom languages. WebVTT captions are supported by Safari, Firefox, IE 10/11, Edge and Chrome browsers as well as by multimedia players used by several streaming-media providers. WebVTT captions can also be displayed on Android devices and by OS X- and iOS-native media players, such as QuickTime, making it the most widely supported caption-display format of those available today. View a simple example of WebVTT captions playing in an embedded video.
SCC

The SCC (Scenarist Closed Caption) file format is a human-readable representation of the line-21 closed-caption data carried in the NTSC broadcast signal. Data in the SCC format are closed captions that can be embedded into OS X and iOS-compatible video or audio files, and can be decoded by QuickTime Player, iTunes, all iOS devices as well as Apple TV. (SCC captions are also used when providing captions on other media, such as DVDs, but this is out of scope for this discussion.) It should be noted that these same devices also support captions delivered in the WebVTT format. View a simple example of SCC captions playing in an embedded video.
SMPTE-TT

SMPTE-TT is the closed-caption format adopted by the Society of Motion Picture and Television Engineers. It is based on TTML, and in fact encompasses the entire TTML specification plus unique extensions for metadata and the display of images. It has been defined as the “safe-harbor” interchange and delivery format for compliance with the FCC’s IP-captioning rules. This means that if a device supports the display of captions in the SMPTE-TT format, or if a program provider delivers SMPTE-TT captions for distribution, the FCC obligations for delivery have been satisfied. Program distributors and multimedia players are free to support other caption formats, however, or to convert SMPTE-TT to other formats (such as WebVTT) for distribution. Currently the only browsers that support the playback of SMPTE-TT captions are IE 10/11 and Edge. SMPTE-TT is also used by some online streaming-media providers.

Utilities to convert caption files from one format to another are available online. While there is no single tool that will handle conversions to and from all available formats, the 3Play Media Caption Converter will interchange files from SRT or SBV to the most common online formats, including TTML and WebVTT. Other tools, such as DCMP's caption converter, will convert files from a single format to another format (in DCMP's case, SBV to SRT). In some cases, it may be more efficient to import an entire caption file into a caption editor, such as MovieCaptioner, and export it in a whole new file format.
Caption delivery

The track element

Until relatively recently, closed-caption data had to be embedded directly into video files prior to delivery to the user. Today, however, popular caption formats-- TTML, SMPTE-TT and WebVTT-- are typically delivered as a separate data track (sometimes referred to as sidecar tracks or files) at the same time that the video is accessed by users. This data track is received by the multimedia player and the captions are displayed if the user turns them on. Caption data can be delivered on the fly from a remote server, or the data can be included in a package, such as an EPUB file, for local playback. Either way, authors can take advantage of a new HTML5 media element called track to display these captions.

The track element was created specifically for carrying and delivering text tracks, such as captions, subtitles and text-based audio descriptions (see the section on media players for more information about this). Much like its companion video and audio elements, it greatly simplifies the process of delivering media to users. track is simply used as a child element of the video element, and it points to the caption file that corresponds to the video being delivered to the user. For example:
<video controls>

<source src="myvideo.mp4" type="video/mp4" />

<track kind="captions" src="myvideo_captions.vtt" srclang="en" label="Captions" default />

</video>

Here, the media player will begin playing the WebVTT caption file (myvideo_captions.vtt) at the same time that it plays the video file (myvideo.mp4). Watch a demonstration of the track element being used to deliver captions to a video embedded in a Web page.
Note that track can be used to deliver almost any text-based caption or subtitle format, including TTML, WebVTT, SMPTE-TT and others not discussed in this paper. It cannot be used to deliver SCC captions, which must instead be embedded in the video, as described in the next section.

Providing captions with audio-only clips requires a slightly different procedure than might be assumed. The expected method would be to simply add the track element as a child of the audio element, in a manner similar to that shown above for adding captions to video. However, this will not result in captions displaying in the audio player. Instead, the HTML5 recommendation advises authors to use the video element (not the audio element) and track element to include captions with audio clips. A code sample is shown below.
<video controls>

<source src="myaudio.mp3" type="audio/mp3" />

<track kind="captions" src="myaudio_captions.vtt" srclang="en" label="Captions" default />

</video>
Don't do this:

<audio controls>

<source src="myaudio.mp3" type="audio/mp3" />

<track kind="captions" src="myaudio_captions.vtt" srclang="en" label="Captions" default />

</audio>
While the former approach works in Safari, Firefox and Chrome, currently IE and Edge will not display captions unless a true video file is specified in the video element. As a workaround, authors who want to provide accessible audio files using the audio element can simply include a transcript on the same page as the player, or link to the transcript externally.
SCC

Rather than being carried in a sidecar track, SCC caption data are typically embedded into the video. This does not mean that the captions are open, but instead means the data are combined (or “muxed”) with the video prior to delivery. The data are hidden, and the viewer must turn the captions on in order to see them. You can still use the video element to point to the SCC-captioned video, as shown in the code sample below. Note that the track element is not used because it is not necessary to stream a caption file alongside the video.

<video controls>

<source src="myvideo_scc_captions.m4v" type="video/mp4" /> </video>
As long as the media player can detect and decode the SCC data embedded in the video stream, the captions will be displayed when the user turns them on. If SCC is not a format that is understood by the player, the data are simply ignored. Watch a demonstration of SCC captions playing in a video embedded in a Web page.

Table 2 below shows which caption formats are supported by popular Web browsers.

	Browser
	OS
	Supported caption format(s)

	Firefox 29+
	Windows
	WebVTT

	Internet Explorer 10/11, Edge
	Windows
	TTML, SMPTE-TT

	Safari 6+
	OS X
	WebVTT, SCC

	Safari iOS
	iOS iOS7+
	WebVTT, SCC

	Chrome 18+
	Windows, Mac
	WebVTT

In accordance with US federal regulations (see the next section to learn more), these players all provide options for viewers to adjust caption color, background, font face and size, and other features. Stand-alone or embedded media players from streaming-media distributors also support captions, including those from YouTube, Vimeo, Yahoo!, Hulu, Netflix, Amazon and others. Most of these players also provide caption-customization features.

Caption regulations

Thanks to a number of federal regulations that have been enacted over the past two decades, captions can now be found on nearly 100% of US broadcast and cable programming. New regulations that were part of the 20th Century Video Communications Accessibility Act (CVAA) are now in effect, and these new rules provide mandates for caption distribution over the Internet. Below is a brief summary of two of these regulations.

Closed Captioning of Internet Protocol-Delivered Video Programming (FCC 12-9)
This rule states that any full-length program that was originally broadcast with captions and is then transmitted over IP must also carry captions of at least the same quality as the original captions. The rules cover only video previously captioned and distributed via broadcast, cable or satellite television. For educators, this could have important implications. For example, the broadcast captions that were carried with original educational programming can now be reused or repackaged for streaming or DVD. Original Web-only programming or user-generated videos are excluded, as is historical (pre-1990) broadcast programming. Customization of caption-display characteristics (color, font, foreground/background, etc.), and the types of devices that are required to support customization, are also covered under these rules.
Closed Captioning of IP-Delivered Video Clips (FCC 14-97)

This rule applies to video clips only, addressing gaps in FCC 12-9. It provides a phase-in schedule as follows.

· Beginning 1/1/2016, all straight-lift clips must be captioned.

· Beginning 1/1/2017, all montages/compilations of straight-lift clips must be captioned (even if they come from different sources).

· Beginning 7/1/2017, all time-sensitive clips, including those that are near-live/live, must be captioned. There is an eight-hour grace period for near-live programs; 12 hours for live.
You can learn more by reading the CVAA Consumer Guide or by visiting the FCC’s disabilities-related laws and regulations Web site.
Audio descriptions

Audio descriptions (also known as video descriptions or simply descriptions) make visual media accessible to people who are blind or visually impaired by providing descriptive narration of key visual elements. These elements include actions, costumes, gestures, scene changes or any other important visual information that someone who cannot see the screen might ordinarily miss. Descriptions are usually timed and recorded to fit into natural pauses in the program-audio track. In non-broadcast cases where a longer description is necessary but there is not a sufficient pause in the program audio to accommodate it, authors can integrate extended audio descriptions into the video. In this situation, the program dialog and video are programmatically paused while a long audio description plays. When the description has finished playing, the video and dialog resume playback. Extended and “regular” descriptions may be mixed in a single multimedia presentation.
When descriptions are integrated into television programs or movies, sound engineers are careful to lower, or “duck,” the program audio when the description is playing so the description can be heard clearly, and then raise the program audio level when the description has finished. This adds time to your production timeline but, depending on your goals, may be necessary if you want to produce a professional-level presentation. Even if you don’t duck the sound levels, you can still create an effective described presentation. Just note that you may have to boost the description’s sound level when you create and process the file to be sure it can be heard over the program audio.
As with captions, descriptions can be open or closed. Open descriptions are merged with the program-audio track and cannot be turned off by the viewer. Closed descriptions can be recorded as a separate track containing descriptions only, timed to play at specific spots in the timeline and played in parallel with the program-audio track. However, because there is no non-custom method for providing true closed audio descriptions online, most described content is composed of two program-audio tracks within a single movie—one with descriptions and one without. Finally, descriptions are usually provided as human-recorded narration, but technology and markup now exist to convey descriptions as text which are turned into speech on the fly by screen readers or other text-to-speech methods. Learn more about text-to-speech descriptions and see working examples of this approach in use. The authoring method described in the next section centers on the creation of human-recorded description.

Description authoring
There are a number of ways to write and record descriptions. The most straightforward method is to use a text processor to write a description script, then use an audio-processing application to record the description files and mix them with the program audio, and then add these descriptions to the original video. NCAM’s free multimedia-accessibility application, MAGpie, allows authors to write description scripts, record them and output them for integration with multimedia. Authors can also use any sound-editing application, such as QuickTime, Audacity, GarageBand, Logic Pro or Sound Forge to record the files. For the best results, record the descriptions in a quiet environment using a high-quality microphone. To minimize errors or ambiguity, speak clearly and read from a written script.
Some examples of described videos are listed below.
· Sock Seeds, Bee Navigation and Immune Cells in Action; all available from PBS Learning Media
· Golden Gate National Recreation Area
· Art Beyond Sight Verbal Description Database
It is out of the scope of this paper to fully describe the process of writing accurate, useful descriptions, but detailed style guidelines can be found in the DCMP Description Key. The information here deals not only with history, approach and style, but also writing descriptions for specific target audiences (e.g., children vs adults) and philosophy, such as advice on when audio descriptions may not be necessary.
The general technical workflow for the creation of descriptions can be briefly summarized as follows.
Watch the video and note opportunities for descriptive narration

Watch the entire presentation to determine where there are pauses in the dialog or narration for insertion of descriptions. This will also provide familiarity with the general pacing of the program material as well as the language level, vocabulary and knowledge the producer has assumed on the part of the viewer. While watching, keep notes indicating where descriptions will be inserted.

Write the descriptions

Time the pause where your first description will be inserted, then use a text editor or an application such as MAGpie to write the description to fit within that interval. Read the description while timing it to make sure it fits within the pause; edit as necessary and re-time. Repeat for subsequent descriptions.

Record the descriptions

Using QuickTime, MAGpie or any sound-recording software, record and edit the descriptions. Time them and re-record as necessary.

Integrate the descriptions into the video; review your work; save and upload the clip

Watch the completed movie to make sure the descriptions play at the proper points in the timeline, are clearly written and appropriately descriptive. If extended descriptions are included, make sure that the video stops and restarts accurately. Re-record and re-integrate descriptions as necessary.

Note that at least one on-line tool is available for adding descriptions specifically to YouTube videos. YouDescribe is a free tool created as part of the Smith-Kettlewell Video Description Research and Development Center (VDRDC). You can use YouDescribe to provide descriptions for your own videos, or for others to add descriptions to your video. Detailed instructions are available on the YouDescribe support page. You can also view numerous examples of videos described via YouDescribe.
Description delivery

As discussed above, human-recorded descriptions are typically delivered open, rather than closed. In online presentations, the description audio files are mixed into the pauses of the narration or dialog in the program-audio track, then this new audio track is added back to the video as what is known as a full-mix audio track. In the broadcast environment, this full-mix track is delivered to viewers as a separate audio track that is marked as an alternative language, usually Spanish. To hear the descriptions, therefore, users may need to select Spanish audio from the language menu of the television or receiver. Online, authors usually provide two complete versions of a video: one with descriptions and one without. You can also provide a custom player with buttons to toggle between audio tracks, thereby avoiding the need to store and deliver two complete videos.
Text-to-speech (TTS) descriptions, on the other hand, can be delivered using the track element in the same manner as captions: in the markup, use track to point to the timed-text file that contains the text descriptions, as shown in the example below.

<video controls>

<source src="myvideo.mp4" type="video/mp4" />

<track kind="descriptions" src="myvideo_descriptions.vtt" srclang="en" label="Descriptions" default />

</video>

When the video plays, the description track is delivered to the user but, as shown in the TTS-description examples, is hidden so that sighted users will not see the text. Instead, the text is fed into an invisible region (sometimes referred to as an off-screen region) that only screen readers will detect. When a description is inserted into this off-screen region, screen readers read the text aloud to the user; when the next description appears in the region, it is read aloud, and so on.

Description regulations

As with captions, audio descriptions have benefitted from regulations introduced as part of the CVAA. While not as prevalent as captions, descriptions can still be found on many broadcast and cable programs, as well as on DVDs and in movie theaters. The video-description rules mandated by the US federal government are briefly summarized below.

· Full-power affiliates of the top four commercial television broadcast networks (ABC, CBS, Fox, and NBC) located in the top 60 television markets must provide 50 hours per calendar quarter of video-described prime time and/or children’s programming.
· MVPDs (multi-channel video programming distributors) with 50,000 or more subscribers must provide 50 hours per calendar quarter of video-described prime time and/or children’s programming on each of the top 5 national non-broadcast networks that they carry. Currently, the top 5 non-broadcast networks are USA, Disney Channel, TNT, History, and TBS.

You can learn more by reading the CVAA Consumer Guide or by visiting the FCC’s disabilities-related laws and regulations Web site. These requirements do not apply to IP-delivered video or original Web-only programming.
Canvas

The canvas element, originally introduced by Apple and now a part of the HTML5 recommendation, defines a container or region in a Web page that is used for the rendering of 2D text, animation, graphs and charts, images and other visual media. It is supported by current versions of most browsers on both Windows and Mac operating systems, although support of certain features may not be consistent from one browser to another at this point in time. In November of 2015, the W3C formally published HTML Canvas 2D Context as a full recommendation.
To define a region with canvas, simply insert the canvas element into the source document. The region defined by the element has no native or default size so you must specify that yourself. In the example below a border has also been added; this is not required, however.
<canvas id="canvas" width="300" height="300"

style="border:3px solid black;">

</canvas>

Javascript is then used to insert and control objects in the canvas region. canvas can also be used to manipulate video or provide effects over video delivered using the video element.

A complete tutorial about implementing canvas is far beyond the scope of this paper, but many resources about its use are available online, including the following:

· Canvas tutorial from the Mozilla Developer Network
· HTML5 Canvas Tutorials
· W3Schools canvas tutorial
canvas is gaining popularity on the Web, and techniques for making objects in canvas accessible are described in HTML Canvas 2D Context, a recommendation from the W3C. These techniques may not be adequately supported by assistive technologies, however, so for this reason, authors should first consider if materials can be made accessible using other techniques. One obstacle for accessibility is that canvas is essentially a closed environment: objects drawn within the region cannot be accessed directly by assistive technology, nor can they communicate their presence to an accessibility API because they are simply pixels rendered on the screen. This is similar to the use of drawing calls as Windows applications draw on the screen. Yet, like GUI platforms that support accessibility, canvas has the ability to expose information to assistive technologies through the use of accessible objects that the browser creates from fallback content. Elements in fallback content are stored between the canvas start and end tags, and each element represents a significant object drawn on the physical canvas. For example, the following code provides descriptive text for the contents of the canvas region.

<canvas id="chart" width="300" height="300"

style="border:3px solid black;" aria-labelledby=”foo”>
[...chart content here...]
<h2 id=“foo”>This is a text alternative for the chart.</h2>

item 1

item 2

item 3

item 4

</canvas>
Although the alternative text will not be visible, screen readers will detect the text in the source code and read it aloud to users. In addition, links and other focusable elements in the alternative are available to assistive technology (see the note about focus below). This approach may be sufficient for some situations, when content is relatively static, but for complex or interactive presentations it may not satisfy accessibility requirements. If the alternative text can present a fully accessible substitute in HTML5, consider creating the content in HTML without the use of canvas.

Note that objects within the canvas region must also be made accessible to keyboard-only users. HTML5 does not specify a standard method for providing keyboard focus within canvas, so authors may need to use Javascript accessibility techniques in order to ensure device-independent interaction (i.e., keyboard accessibility), access to dynamic changes, etc. See an example of keyboard focus within canvas for one approach. WebAIM offers an excellent tutorial on basic JavaScript-accessibility techniques.
In the HTML Canvas 2D Context recommendation are contained two new elements that will aid in the creation of accessible canvas materials. The first, drawFocusIfNeeded, provides a way to draw a focus outline around the object (or path), and will also notify the accessibility API about the location of the focused object, meaning assistive technology will announce the presence of the object to users. In addition, if the focusable object is off-screen (but still within the bounds of the canvas region), it will be scrolled it into view when it receives keyboard focus. drawFocusIfNeeded has been implemented by Firefox and Chrome (both Windows and Mac) although users may need to turn on turn on specific flags in order to enable this feature, depending on the browser version in use.
The W3C is also working on a feature called addHitRegion, which will pass a dictionary object to the id of the hit region and a control (HTML element) in fallback content, and associates it with the current path or that object which becomes the hit region. This allows the author to bind a hit-region location to that fallback element and provide the added value of hit-testing support. In future versions of the Canvas 2D specification, a mouse “hit” within the region will be routed to the fallback element, allowing the author to process the keyboard and mouse events on the same element.
A third feature of the Canvas 2D API is clearRect(). Here, if the rectangle encompasses a hit region it is deleted. The use of hit regions to populate accessibility API location information stems from early work by screen readers where this location was used in off-screen models for objects drawn on the screen. The location would be tied to object class information to produce a “role” for an accessible object that could be spoken to a screen reader and the location information would be used to manage the off-screen model and help position text to be placed on refreshable braille displays.
A canvas tutorial is available from the Mozilla Developer's Network. Read a brief interview that describes the basics of canvas accessibility, and also take a look at a brief discussion and demonstration of an accessible canvas object.
Flash

Flash is Adobe’s familiar multimedia and software technology. Multimedia presentations authored in Flash can contain large amounts of information yet still remain reasonable in data size, making them easy to stream, download and play. Since Flash uses vector-based graphics, presentations can also be resized without loss of clarity-- a boon to users with visual impairments.

Flash can be used to create entire Web sites; specialized embedded components, such as forms, interactive activities or games; or to present video and audio in custom players. Due to the increasing popularity of devices and operating systems that do not support Flash, however, Flash is seeing fewer and fewer implementations. Generally speaking, technology is shifting toward HTML5 and related markup languages (CSS and SVG, to name but two) to create and distribute interactive activities and video/audio clips. However, there are still plenty of Flash materials on the Internet, and plenty of new Flash materials are released every day. This section of the report will briefly summarize Flash multimedia accessibility but, at the same time, authors are encouraged to investigate alternative accessible technologies that can be used on a wider variety of hardware platforms.
In all of its many forms, Flash accessibility has always been a challenge but, at the same time, some degree of accessibility is nearly always achievable. Adobe maintains a large library of information related to Flash accessibility, most of which can be accessed through their Flash accessibility site. This includes a useful video tutorial covering Flash accessibility which showcases both closed captions and audio descriptions. The Web Content Accessibility Guidelines (WCAG 2.0) offers a set of techniques for Flash accessibility as well, covering all basic approaches including captions and audio descriptions.
Captions and audio descriptions in Flash
When it comes to multimedia, Flash has provided support for closed captions for over a decade. Flash players can display captions through the FLVPlaybackCaptioning component, which makes use of the TTML format (see the section on captions formats for information about TTML). Alternatively, Flash players can also use a free captioning component created by NCAM, CCforFlash, to integrate TTML captions into Flash presentations. Authors can (and should) make Flash players accessible so that keyboard-only and screen-reader users can control them; learn more about providing accessible player controls in Adobe’s Accessibility Best Practices document. Broadly speaking, as long as all controls are labeled clearly and can be focused from the keyboard, the player will be usable by those who rely on screen readers or a keyboard alone.
Creating a Flash media player requires advanced authoring skills, so for those who would prefer to use a pre-built accessible Flash player that supports closed captions, there are at least two options: NCAM’s free ccPlayer, and the JWPlayer. Both support TTML captions (and, in the case of the JWPlayer, alternative formats), and both are accessible to keyboard and screen-reader users.
Support for closed audio descriptions in Flash has never been as consistent as that for closed captions. Adobe does not provide an audio-description component, and while earlier versions of the JWPlayer did provide a plug-in for closed descriptions, that plug-in is no longer available for current versions of the player. Short of building a custom plug-in for a Flash player, the best way to deliver audio descriptions currently is to provide two versions of the video, one with open descriptions and one without descriptions. See the section on audio descriptions for details as well as information about alternative approaches.
Flash interactives

Interactive Flash activities, including games, scientific demonstrations, or interactive charts and graphs, have always posed challenges for accessibility. While it is always possible to add accessibility support to Flash components, these enhancements may not always provide sufficient support for users with disabilities, especially those using screen readers. Certain tasks, especially drag-and-drop, are difficult to make accessible to users who cannot see the screen not just in Flash but in other markup or presentation languages as well.
When it comes to making complex Flash activities accessible, consider the following basic principles:

1. provide as much native accessibility support as possible;

2. enhance this accessibility support with additional audio if necessary;
3. provide total control of the component or activity from the keyboard alone.
Adobe’s Accessibility Best Practices document covers basic design requirements for making Flash objects as accessible as possible, so it’s worth spending time studying this document and making use of its associated resources. However, there will be instances where it simply is not possible to make an activity entirely accessible using built-in techniques. In those cases it may be necessary to consider two further options:

1. Provide complete audio support for navigation and interaction
This self-voicing approach requires that all aspects of the activity be conveyed using built-in speech. In these instances screen readers may need to be suspended in order for the user to be able to hear and understand all of the audio output from the activity. Users will also need to be told explicitly what key commands are available to navigate the site as well as to perform specific tasks. Try a self-voicing game from PBS Kids to see one example of how this can work.
2. Provide an accessible, non-Flash alternative

In cases where a Flash activity cannot be made adequately accessible, an accessible non-Flash version should be made available to users. HTML is frequently the best choice here as authors can take advantage of its wide-ranging support for all types of assistive technology as well as its integration of other markup languages that can further enhance accessibility. The non-Flash activity should provide the same information as the interactive version; this can usually be accomplished through the use of images and image descriptions. Conventional best practices for accessibility should be followed, including appropriate structural markup such as headings, data tables, forms, etc. See one example of an accessible non-Flash alternative from NOVA Science Now.
Video and audio playback
The quantity of Web pages, e-books and other electronic materials that make use of video and audio clips, whether embedded or displayed in stand-alone software media players, is enormous and is increasing by the day. The popularity of media is primarily due to two factors: the low (or sometimes free) cost of video/audio production tools, and the ease with which media clips can be distributed online. The latter is especially significant, thanks in large part to the introduction of new markup that is available in HTML5. Adobe’s Flash has been the favored method for many years for distributing online media but now appears to be losing ground to HTML5 media. Providing media in Flash is still possible, of course; in fact, Flash remains popular and is widely supported by browsers on Windows, Android and OS X (but is notably absent from iOS). See the section on Flash for more information on Flash media players.
HTML5 media elements
HTML5 now offers two elements, video and audio, that have been especially transformative for authors who want to add video or audio to Web pages or e-books. Prior to the introduction of these elements, authors needed to use the object and embed elements along with complex plug-in code specifying a wide variety of playback parameters in order to embed media in Web pages. Users also had to have the appropriate plug-ins installed in the correct browsers in order to see the media. Today, sending media to users is much simpler: the process can be as easy as inserting the video or audio element into the source code; specifying the path to the media source file, and adding a few attributes to specify the size of the player, expose player controls, etc. There is no need to build a special media player because the browser will provide the player (although authors are always welcome to create custom players). The video and audio elements also offer an easy way to offer more than one codec for the same content. Authors can include more than one type of video or audio in the same element and the browser will select the correct version for the user’s setup.
Below is sample code showing a simple instance of a video embedded in a Web page.

<video width=”320” height=”240” controls>
<source src="myvideo.mp4" type="video/mp4" />
<source src="myvideo.ogg" type="video/ogg" />

</video>

Here are images of the default video player in two browsers, Safari and IE (respectively).

[image: image1.jpg]

[image: image2.jpg]

Embedding an audio clip works in a similar manner, shown below.
<audio controls>

<source src="myaudio.mp3" type="audio/mpeg" />
<source src="myaudio.ogg" type="audio/ogg" />
</audio>

Here are images of the default audio player in Safari and IE (respectively).

[image: image3.jpg]o <) @

[image: image4.jpg]

In both examples the controls attribute has been included in the code, which forces browsers to display the player’s control bar. In the video examples you can also see a CC button, which indicates that captions are available and can be toggled on and off. (Note that while Firefox supports caption playback it currently does not provide a caption-control button.) Additionally, each code example specifies two source files. This is not required but is a good practice because there is no single, standard media format that browsers are required to support. In other words, not all browsers play all video- or audio-clip formats. Video formats such as mp4 and ogg theora, and audio formats such as mp3 and ogg vorbis, are supported by most popular browsers or other renders, though, so providing source files in these formats will cover most use cases. Video and audio will always need to be made accessible, so be sure to read the section about captions and the section about audio descriptions to learn how to include those features by using the track element.

Browser-default media players; custom HTML media players
As mentioned above, modern Web browsers will provide default media players when they detect the video or audio elements. While this makes it simple to play back media clips, it’s important to note that these players may not all be sufficiently accessible for all keyboard-only or screen-reader users. Player accessibility will depend on a number of factors, such as the browser, operating system or assistive technology in use. It is beyond the scope of this paper to describe which combinations of these components will result in the most accessible experience, so be sure to test your presentation with as many permutations as possible. One good source for information about browser support of HTML5 media elements (including the track element for captions or TTS descriptions) is the regularly updated State of HTML5 Video report provided by JW Player.
Alternatively, you can use HTML to build your own custom accessible player. Creating a custom player requires advanced authoring skills, so if you are not prepared to take on this task it’s worth searching for pre-built alternatives. Three good examples of accessible players are the JW Player, which supports playback of both HTML5 and Flash media; the open-source PayPal Accessible HTML5 Video Player, which is a work in progress that can be customized to suit particular needs; and the AblePlayer, which provides support for captions and descriptions (both recorded and TTS), and is keyboard and screen-reader accessible. All three players support captions in the WebVTT format; JW Player also supports SRT and TTML captions.
Video-hosting sites
Distributing video and audio clips online need not mean building your own player or modifying a pre-built player, or even relying on the browser’s default player. Video-hosting sites have been available for a number of years and provide a simple way to store, distribute and play media with minimal effort. Authors don’t need to do anything but upload video or audio (and captions or audio descriptions, of course) and either link to the media or add code that embeds the hosted player in a Web page. Two popular services in this sector are YouTube and Vimeo (although others are also available), both of which provide players with a certain degree of accessibility, including caption support. Both services are described briefly below.
YouTube

Arguably the most popular video-hosting site on the Web, YouTube provides media players that support both Flash and native HTML5 media (although YouTube now defaults to its HTML5 player). YouTube's HTML player is accessible to keyboard-only users, and screen-reader accessibility has been improving but still may vary depending on the operating system and AT in use, so be sure to test thoroughly before embedding YouTube videos on your site. YouTube provides instructions for requesting the HTML5 player if it does not load by default, as well as documentation explaining how to use YouTube with a screen reader.

YouTube’s player does not currently support closed audio descriptions (authors must include a separate open-described video instead), but it does support captions in WebVTT, TTML and other formats. Read the full list of supported caption formats for the YouTube player. You can upload your own captions or write them using YouTube's online caption editor as described in the section on captions. As discussed in that section, YouTube creates automatic captions for all uploaded videos and makes these automatic captions available to viewers. While you cannot prevent YouTube from applying automatic captions to your videos, the quality is so poor that these captions should always be disabled once the video has been uploaded so that users cannot turn auto-captions on while the video is playing. Read the instructions for disabling automatic captions.
Additionally, YouTube gives users a wide variety of caption-display options (as required by FCC regulations; see FCC 12-9, Closed Captioning of Internet Protocol-Delivered Video Programming, Appendix B for more information) and, because these options are saved in users’ preference profiles, these customizations are always displayed when captions are turned on.
Vimeo

Vimeo is another popular media-hosting site. Like YouTube, the Vimeo player now defaults to HTML5. Captions in a variety of formats, including TTML and WebVTT, are also supported. Read the Vimeo captions and subtitles FAQ for complete information. Closed audio descriptions are not supported at this time. Also, Vimeo does not yet provide users with a way to customize the caption display. As with YouTube, the accessibility of the Vimeo player is generally good but should be tested with a variety of operating systems and assistive technologies before deploying it on your Web site. Read more about the accessibility features of the Vimeo player.
Adding captions to Vimeo videos can be accomplished in at least two different ways: users can create caption files using stand-alone caption editors (see the section on caption-authoring software for more information) and then upload the caption file to Vimeo’s servers; or users can take advantage of Vimeo’s partnership with Amara and use the Amara caption/subtitle editor. The Amara caption editor can be used from within the Vimeo site or it can be used from the Amara site itself. Learn more about using the Amara caption editor, and read instructions for uploading subtitle files directly to Vimeo.
Popcorn.js
In addition to simply playing back media that has been embedded in Web pages or other electronic documents, it is also possible to create interactive demonstrations and presentations that make use of synchronized external elements. Javascript is the primary approach here; specifically, the use of Popcorn.js, a Javascript library that can be used to assemble and organize productions that start with video or audio clips, and then launch specific events along the timeline of these media clips. Watch a simple demonstration of a popcorn presentation, and note that while the video is playing in one region of the screen, other information, such as images, Web pages, maps and text are appearing in an adjacent region. The synchronization of these events with the video is all done with Popcorn.js.
While very useful for instructional, academic and entertainment purposes (see many other Popcorn demonstrations), Popcorn.js can be used to enhance the accessibility of any multimedia-based presentation. For example, while a video is playing, supplemental information such as glossary terms and definitions, Wikipedia entries, or even extended captions and audio descriptions can be made to play or appear on the screen at specific timed intervals. If this supplemental information requires extra attention from the viewer, it is possible to programmatically pause the video while the information is displayed, and then resume playing the video after an appropriate interval. Alternatively, the presentation can be programmed so that users can manually restart the video after it has been automatically paused.
While not all uses of Popcorn.js are, strictly speaking, accessible, NCAM has created an accessible presentation that demonstrates how supplemental materials can be synchronized and launched alongside a video. This demonstration, Using HTML5 and JavaScript to Deliver Accessible Supplemental Materials, provides visible glossary definitions, Wikipedia entries and images with descriptions, all synchronized using Popcorn.js. The entire presentation can be controlled from the keyboard alone or with any screen reader, and all of the visual supplemental materials are accessible to screen readers. In addition, when supplemental text or images appear on the screen the video is automatically paused and screen readers begin reading the new material; users can then manually explore the material and, when finished, resume playing the presentation. Documentation and sample code are available from the project Web site.
The best place to begin learning about Popcorn.js is at the Popcorn.js code repository on GitHub. In addition to complete documentation, the repository also contains a gallery of plugins that can be used to add functions to Popcorn.js presentations. Plugins are a handy way to add functions and visual effects by creating events that respond to markers in a video timeline. (For example, in the NCAM demonstration above, the Wikipedia events are all provided by using the Wikipedia plugin.) In most cases, authors simply need to alter a minimal set of a plug-in’s parameters in order to achieve a customized result.
While it is possible to write a Popcorn.js presentation entirely by hand, this requires advanced knowledge and coding skills and can rapidly become a complicated proposition. Until recently, authors who were not equipped for such a challenge could take advantage of Mozilla’s Popcorn Maker, a free on-line editor that synchronizes media with specific events, such as text and images. Unfortunately, Popcorn Maker has been deprecated by Mozilla and there is no alternative currently available from Mozilla or elsewhere. Authors can still download the Popcorn Maker source code from GitHub, however. Note that using Popcorn Maker does not necessarily guarantee an accessible presentation, so manual coding may still be necessary in order to meet accessibility best practices.
Integrating multimedia into EPUB

As of this paper's publication date, a number of EPUB reading systems support the inclusion of video and audio clips, and some also support the integration of captions. Two of these reading systems are described briefly below, but for a more complete listing of EPUB reading systems that do and do not support multimedia, visit EPUBTEST, which is sponsored by the Book Industry Study Group (BISG), the International Digital Publication Forum (IDPF), and the DAISY Consortium. EPUBTEST not only describes the EPUB features available in dozens and dozens of EPUB reading systems, it also includes information on accessibility support, such as captions.
Readium

Readium for Chrome is the browser extension built on ReadiumJS, an open-source JavaScript library for displaying EPUB publications in Web browsers. The code is built and maintained by the Readium Foundation, which focuses its efforts on developing a rendering engine for EPUB documents. Readium is not a stand-alone reading system, although being open-source it could become the basis of a reading system if a software developer chose to use the code for that purpose. The Readium for Chrome browser extension can be downloaded from the Google Play store for free. You can also read the latest Readium release notes to see what's new in the latest version.
In addition to supporting most of the EPUB specification, Readium also supports EPUB Media Overlays, a way to include synchronized audio within an EPUB. Media Overlays (which are built on the W3C's Synchronized Multimedia Integration Language, or SMIL) can, for example, be used to provide a karaoke-like read-along feature with text in EPUB publications. Additionally, Readium supports the inclusion of video and, by extension, closed captions.
A tutorial on how to integrate video into an EPUB publication is beyond the scope of this paper, but there are two excellent publications available that will teach you what you need to know: EPUB 3 Best Practices, by Matt Garrish and Markus Gylling; and Accessible EPUB 3, also by Matt Garrish. Both books describe in detail the methods for adding video to EPUBs; the added benefit of the latter book is that it also provides full details on how to make EPUBs as accessible as possible. Because EPUB is built on HTML5, captions can be added to videos in EPUBs by using the track element, which is discussed in detail in the caption-delivery section. And since Readium is a Chrome browser extension, it uses the caption format that Chrome supports, which is WebVTT. Samples of EPUB code that demonstrates the integration of video and caption can be found at the EPUB 3 Sample Documents GitHub repository. Search for "captions" to help find the appropriate code.
iBooks

iBooks is Apple’s free e-book reading application for Mac, iPhone or iPad. PDF and EPUB are the formats that can be opened in iBooks, but there is a third format, .ibooks, that is supported as well. The .ibooks format, based on EPUB but with proprietary Apple extensions, is created by iBooks Author, also available for free. Materials written using iBooks Author are usually (but not always) textbooks and can include (among many other features) video and audio clips, and these clips can contain captions and/or audio descriptions. Books in the .ibooks format can only be opened using the iBooks reading application. iBooks will open EPUB and PDF documents that were created with other authoring applications, however.
Apple provides a library of instructional materials for iBooks Author that describe in great detail the workflow for creating iBooks with multimedia and interactive components (Apple refers to these as multi-touch books). Additionally, NCAM’s Creating Accessible iBooks Textbooks with iBooks Author will show you how to create iBooks that are as accessible as possible. Included in these guidelines is a section devoted to making video and audio embedded in iBooks publications accessible through the use of captions and audio descriptions. Apple also provides documentation on iBooks Author’s accessibility features.
iBooks currently supports only the SCC caption format. These captions are decoded at the operating-system (OS X or iOS) level, meaning that if you’ve created special caption-display preferences on your computer or mobile device the captions in the iBooks media will reflect those preferences as well. Below is an image of a captioned video clip in an iBooks textbook.

[image: image5.jpg]L]

about critical visual elements that might not be
conveyed through the main audio track alone.

Because the captions are part of the media tself, you do
not need to do anything special to make the captions
available to the user: users will turn them on or off using
iPad Settings (Settings > Video > Closed Captioning).
However, because there is no visual indication on the iBooks
media player that captions are available, you should explicitly
tell users that the clip is captioned. You can do this in the
text of the book itself, or you can add a title and caption to
the page and say there that the clip is captioned, as shown in
the example video below.

Movie: Balance of Trade

This closed-captioned video shows how one town in West Virginia is
building trade relations with China.

workers are designing
and building machines

T

Creating Accessible iBooks Textbooks with iBooks Author Q

Note that when you play the movie in iBooks Author you
will not see the captions, but the captions will be available
when you test the book in iBooks on iPad.

Special note about video descriptions: If you need to
add video descriptions to the clip, note that there is currently
no method for adding closed descriptions to a clip embedded
in a Multi-Touch book; instead, they must be open. With this
in mind, the best current practice is to plan your video
production to integrate descriptions directly into the narration
or dialog, minimizing the need for additional descriptive audio
elements. The second option is to add a separate track of
open descriptions: that is, descriptions that everyone will
hear and that cannot be turned off. Again, the best practice
is to make this part of the production process, but you can
add the descriptions to the video after final assembly. For
more information, see Creating Accessible iTunes U Content,
which describes in detail the processes for adding descriptions
to media that will play in a Multi-Touch book.

On the next page is a sample video clip that has both
closed captions and open descriptions.

Although closed captions are supported in iBooks multimedia, only open audio descriptions can be included in iBooks at this point. NCAM's iBooks accessibility guidelines give complete details on adding both captions and descriptions to the multimedia, and how to indicate to users that these enhancements are available.
Case studies
Despite the many tools described in this document, the number of accessible interactive activities available is low. There are a number of reasons why it is more difficult to create accessible interactives than other categories of content. One problem is that the programming languages in which these activities are generally built were designed with visual communication in mind. Unlike HTML, which is based in text-based information, Flash and other animation tools were visual containers first and required retrofitting to offer text information for use by assistive technologies. Another obstacle is the custom nature of these resources. Each interactive activity seeks to offer an experience that isn’t available through one-way information transfer; instead the goal is to give the user a sense of manipulating real objects, creating new combinations, or exploring simulated tools. Because each interactive is entirely different, access solutions can’t be copied between interactions. The access solution will often need to be custom designed at the same time the activity is designed. This raises a third issue: most interaction designers aren’t trained in accessible design. Without a solid understanding of the goals of universal design and the tools necessary to create accessible materials, technologists and designers can’t create accessible activities.
There are groups working now to implement techniques to make their interactive activities accessible. These case studies explore those efforts in real world contexts to show how the technologies described in this paper are used in practice to transform online interactions. We welcome additional case studies. If you are part of a team creating accessible online activities, please get in touch with the Diagram Center to share what you’ve learned.
PhET: Flash to HTML5

Introduction

The PhET Interactive Simulations project at the University of Colorado Boulder creates free, interactive math and science simulations. Originally the simulations were developed in Flash and Java, but since 2013 the PhET simulations have been developed in HTML5. Working in HTML5 opens a pathway to increase the accessibility of simulations. However, making interactive simulations accessible requires designing a keyboard interface and providing appropriate text information for users who cannot see.

Challenges

Though accessed through a web browser, the underlying structure of the simulations is quite distinct from that of a typical website. Additionally, there is no built-in infrastructure for the simulations to be able to communicate with assistive devices, and no examples of accessible simulations similar to the PhET simulations. Because of this, we originally did not think we would be able to follow certain conventions regarding the implementation of keyboard interaction and auditory descriptions.

Additionally, each simulation is unique, and so designing an accessible interface is a sim-by-sim process. The interfaces are sometimes complex, with many movable parts, layers, and controls. In addition, there are many decisions to be made along the way about how to convey visual information for non-visual users while retaining the educational nature of the simulation. Each simulation is designed to support inquiry learning – where the student investigates and interacts with the simulation to develop their understanding of the math or science concepts. Instructions and feedback for non-visual users must be clear enough to support their use while still allowing for an inquiry experience and, ideally, a collaborative experience with peers – including sighted peers.

Because of the open-ended nature of the simulations, some of the PhET simulations are used across many grade levels. For example, the simulation Energy Skate Park: Basics can be used in middle school, high school, and freshmen college courses to address introductory, intermediate, or more advanced topics in energy. With students using the simulations for differing levels of information, across age ranges, it is important to have flexible auditory feedback for non-visual users.

Solutions

Working with colleagues at OCAD University’s Inclusive Design Research Centre, PhET has begun prototyping accessible simulations, including Forces and Motion: Basics, Capacitor Lab: Basics, Concentration, and Faraday’s Law (http://phet.colorado.edu/en/about/accessibility). Through exploring multiple methods to allow the simulations to communicate with assistive devices, we have found use of a parallel DOM to be the most suited to a robust implementation of a wide-range of accessibility features. The use of a parallel DOM involves the creation of a parallel structure to the simulation, which acts similar to a webpage that represents the simulation in its current state, and can communicate that state to various assistive devices. As the user interacts with the simulation, the parallel DOM is updated to reflect that change.

Through initial interviews, we discovered that screen reader users tried to interact with the simulation like a typical webpage, e.g., looking for headings first, and required additional prompting to navigate through the interactive elements using the Tab key. We also learned that our initial designs of auditory feedback needed to be expanded in a number of areas. For example, our initial designs had inconsistent feedback indicating when a user had successfully completed an action (e.g., successfully placed a moveable object in a new location). Also, our initial designs did not provide sufficient information to indicate when the user was inside the “Play Area” (where interactive objects are located in the simulation) versus “Control Panels” (where checkboxes, buttons, and sliders allow the user to modify features in the “Play Area”).

Based on these observations, we revised our original simulation prototypes to include expanded semantic information, including the addition of information about the various regions of the simulation and possible interactions available in each region through the use of headings and paragraphs, which can be navigated through typical screen reader keyboard shortcuts. This seems to indicate that achieving the goal of more accessible simulations involves, in part, learning how to express a dynamic and highly visual interface into the underlying structure of a constantly updating webpage.

Outcomes

We are currently proceeding with our iterative design process, revising our original designs and testing with screen reader users. During our first round of interviews we focused on understanding challenges to basic navigation, the simulation structure, and what can be done with the simulation. In our next round of interviews, we aim to learn more about the effectiveness of our updated implementation of navigation, and to also begin delving into what refinements may be needed to the auditory feedback to better support users in learning from the simulation.

Our goal is to have three simulations with effective and refined keyboard navigation and auditory descriptions published to the PhET website by summer of 2016. We are also investigating the use of sonification (the use of non-speech sounds) to support the verbal descriptions provided, and the addition of an inclusive feature control bar that can be accessed during use of the simulation to dynamically control the various accessibility features to be offered.

In addition to the PhET simulations being available for free from the PhET website (http://phet.colorado.edu), all software code, research findings, and documentation will be made available.

Wolfram CXX

Introduction

Wolfram embarked on the creation of best practices and techniques for accessible interactive scientific graphics as a Diagram Center mini-grant project. The goal was to design a framework for making an interactive graphic accessible, with consistent ways to control the graphic and read the data displayed. To accompany the best practices document, Wolfram created a working example, showing an accessible slider controlling a bar graph. The full range of recommended control keystrokes and data display functions, both audio and visual, are demonstrated.

Challenges

Because screen readers and browsers vary in the way they implement accessibility APIs, it is difficult to achieve an optimal user experience for every combination of screen reader and browser. For the working example created for this project, it is recommended to use Firefox with NVDA or JAWS.

A fully interactive graphic requires complex information to be conveyed to the user and may offer similarly complex input, depending on the graphic. Current technology is limited in the ways this information can be communicated. There is a lot of information contained in a single static image and presently we verbally describe images to convey their meaning to non-visual users, but describing even the simplest image takes many seconds (for example: ‘solid red square on solid black background’). Scientific graphics are meant to codify and condense a large dataset into a discernibly abstract representation, often requiring hierarchical examination, and can require several minutes to truly understand. A “dynamic” image changes up to 20 times per second, and a user with full visual cognition can detect changes in the graphic in order to hone in on interesting portions to explore further. This selective attention is not available to a non-visual user with traditional description techniques; the user’s sense of what is important must be shaped by the decisions of the description writer. Moreover, in the simplest case, one second of visual dynamic updating could take 40 seconds to describe in words. Much like when a space ship jumps into warp speed in a sci fi movie, the user needs to blur the unimportant details to focus on the important ones. Finding a balance between verbosity and speed requires individualized cognitive optimization and cannot be solved in general. This working example demonstrates a series of key commands and automated descriptive responses that provide a first attempt at this approach.

Solutions

The interactive graphic is coded in HTML, JavaScript, and CSS. The code is available from the Diagram Center website. Following HTML and related standards should ensure accessibility in most assistive technologies, and access should improve over time as browsers and assistive technology tools implement standards more faithfully. Use of an ARIA live region supports flexible output; the interactive graphic can produce any text message needed and write it to the speech log. The speech log is shown visually for demonstration, but more importantly, because it is a live region, screen readers will automatically read the output as it is provided. The ability to fully explore the static graphic at any point and to have only the relevant features that change highlighted during dynamic updating supports the same cognitive interaction that is provided to a visual user.

Outcomes

The working example and the best practices guide are both available for the use of others in the field. Presentations describing the work and demonstrating the working example are also available. Visit the Diagram Center page on Accessible Dynamic Scientific Graphics.
Page 2

